# Kinetic Monte Carlo Simulations of Surface Reactions

#### **Michail Stamatakis**

#### University College London

Kinetic Monte Carlo Crash-Course and Workshop

http://zacros.org/workshop

#### Why Do Kinetic Modelling in Catalysis and Surface Science?

#### • DFT Calculations in Catalysis:

- ✓ Electronic structure of materials
- ✓ Stability of intermediates
- ✓ Chemical pathways and energy barriers

*Need "predictive models able to capture trends in activity and selectivity"* 

- Parallel or competing pathways?
- Temperature and pressure effects?
- Coverage effects on reaction rates?



Kinetic modelling necessary





## The Kinetic Monte Carlo Approach



 $CO_{(gas)} + OH^* \rightleftharpoons COOH^*$ 

- Instead of simulating dynamics, KMC<sup>1</sup> focuses on rare events
- Simulates reactions much faster than Molecular Dynamics
- Incorporates spatial information contrary to micro-kinetic models<sup>2</sup>
- <sup>1</sup> M. Neurock and E. W. Hansen, Comput. Chem. Eng. 22, S1045 (1998); K. Reuter and M. Scheffler, Phys. Rev. Lett. 90: 046103 (2003); M. Stamatakis, J. Phys. Condens. Matter. 27: 013001 (2015).
- <sup>2</sup> J. A. Dumesic et al., The Microkinetics of Heterogeneous Catalysis. (American Chemical Society, 1993).

## The Kinetic Monte Carlo Approach



 $CO_{(gas)} + OH^* \rightleftharpoons COOH^*$ 

- Instead of simulating dynamics, KMC<sup>1</sup> focuses on rare events
- Simulates reactions much faster than Molecular Dynamics
- Incorporates spatial information contrary to micro-kinetic models<sup>2</sup>
- <sup>1</sup> M. Neurock and E. W. Hansen, Comput. Chem. Eng. 22, S1045 (1998); K. Reuter and M. Scheffler, Phys. Rev. Lett. 90: 046103 (2003); M. Stamatakis, J. Phys. Condens. Matter, 27: 013001 (2015).
- <sup>2</sup> J. A. Dumesic et al., The Microkinetics of Heterogeneous Catalysis. (American Chemical Society, 1993).

# Outline

- Atomistic/Molecular level
  - Calculating rates for elementary events (transition state theory)
- Mesoscopic level
  - Simulating reactions on spatially extended systems
- Accurate modelling of catalytic surface reactions
  - Complex materials (lattices)
  - Complicated reactions
  - Coverage effects



# Outline

- Atomistic/Molecular level
  - Calculating rates for elementary events (transition state theory)
- Mesoscopic level
  - Simulating reactions on spatially extended systems
- Accurate modelling of catalytic surface reactions
  - Complex materials (lattices)
  - Complicated reactions
  - Coverage effects



Assumption: quasi-equ between initial state an transition state:

$$\frac{[*]}{[A] \cdot [B]} = \frac{Q_*}{Q_A \cdot Q_B}$$

Assumption: quasi-equilibrium  
between initial state and  
transition state:  
$$\boxed{[*]}_{[A] \cdot [B]} = \frac{Q_*}{Q_A \cdot Q_B}$$
$$\xrightarrow{A+B} \rightleftharpoons^* \rightleftharpoons^* \leftarrow^* C+D$$
$$\xrightarrow{Transition state}$$
region  
$$\xrightarrow{Potential Energy}$$
Surface  
$$Q_A = \frac{1}{h^{3N_A}} \cdot \int exp\left(-\frac{\mathcal{H}_A}{k_B \cdot T}\right) d\Gamma_A \quad \text{and} \quad Q_B = \frac{1}{h^{3N_B}} \cdot \int exp\left(-\frac{\mathcal{H}_B}{k_B \cdot T}\right) d\Gamma_B$$

$$Q_* = \frac{1}{h^{3 \cdot N}} \cdot \int exp\left(-\frac{\mathcal{H}_*}{k_B \cdot T}\right) d\Gamma_* \qquad \text{where } N = N_A + N_B$$

P. Pechukas, Statistical Approximations in Collision Theory, In Dynamics of Molecular Collisions - Part B, W. Miller, ed. Springer 1976

 $A+B \rightleftharpoons * \rightleftharpoons C+D$ **Assumption**: at the transition state the Hamiltonian can be expressed as: δ **C** + D  $\mathcal{H}_* = \frac{\mathbf{p}^2}{2 \cdot \mathbf{m}^*} + \mathcal{H}^{\ddagger}$ A + B **Potential Energy** Reaction Coordinate kinetic energy (along "everything else" reaction coordinate) Therefore

$$Q_* = \frac{\delta}{h} \cdot \frac{1}{h^{3 \cdot N - 1}} \cdot \int \exp\left(-\frac{\mathcal{H}^{\ddagger}}{k_B \cdot T}\right) d\Gamma^{\ddagger} \cdot \int_{-\infty}^{\infty} \exp\left(-\frac{p^2}{2 \cdot m^* \cdot k_B \cdot T}\right) dp$$
$$Q_* = \frac{\delta}{h} \cdot Q^{\ddagger} \cdot \sqrt{2 \cdot \pi \cdot m^* \cdot k_B \cdot T}$$

P. Pechukas, Statistical Approximations in Collision Theory, In Dynamics of Molecular Collisions - Part B, W. Miller, ed. Springer 1976

**Transition state** 

region

**Surface** 



P. Pechukas, Statistical Approximations in Collision Theory, In Dynamics of Molecular Collisions - Part B, W. Miller, ed. Springer 1976

Collecting the relations in red boxes:

... we

Collecting the relations in red boxes:  

$$\frac{[*]}{[A] \cdot [B]} = \frac{Q_*}{Q_A \cdot Q_B}$$

$$k_{TST} = \frac{[*]}{[A] \cdot [B]} \cdot \frac{k_B \cdot T}{\delta \cdot \sqrt{2 \cdot \pi \cdot m^* \cdot k_B \cdot T}} \qquad Q_* = \frac{\delta}{h} \cdot Q^{\ddagger} \cdot \sqrt{2 \cdot \pi \cdot m^* \cdot k_B}$$
we end up with:  

$$k_{TST} = \frac{Q^{\ddagger}}{Q_A \cdot Q_B} \cdot \frac{k_B \cdot T}{h}$$

Usually, one encounters a slightly modified version:

- Fudge factor  $\kappa$  accounting for re-crossings
- Potential energy contribution taken out of the partition functions —

$$k_{TST} = \kappa \cdot \frac{k_{B} \cdot T}{h} \cdot \frac{q^{\ddagger}}{q_{reac}} \cdot exp\left(-\frac{E^{\ddagger}}{k_{B} \cdot T}\right)$$

P. Pechukas, Statistical Approximations in Collision Theory, In Dynamics of Molecular Collisions - Part B, W. Miller, ed. Springer 1976

.Т

 $Q_*$ 

#### So What Does It All Mean?

•  $r_{TST} = k_{TST} \cdot [A] \cdot [B] \cdot dt$  = average number of transitions from reactants to products per unit time. But what about the statistics?



#### • The system is memoryless $\Rightarrow$

- Waiting time for reaction events follows the exponential distribution with rate parameter  $\ensuremath{r_{TST}}$
- Number of events in given time interval follows the Poisson distribution with rate parameter  $r_{\rm TST}$





# Outline

- Atomistic/Molecular level
  - Calculating rates for elementary events (transition state theory)
- Mesoscopic level
  - Simulating reactions on spatially extended systems
- Accurate modelling of catalytic surface reactions
  - Complex materials (lattices)
  - Complicated reactions
  - Coverage effects



#### From One Reaction to Many...

• Many species on catalytic surface, many possible reaction types,



each with its own rate constant:

 $\tau_{1} \sim \mathcal{Exp}(\mathbf{r}_{TST,1})$  $\tau_{2} \sim \mathcal{Exp}(\mathbf{r}_{TST,2})$  $\vdots$  $\tau_{n} \sim \mathcal{Exp}(\mathbf{r}_{TST,n})$ 

#### Time of occurrence of next event:

$$\tau = \min_{i} (\tau_{i}) \sim \mathcal{Exp}\left(\sum_{i=1}^{n} r_{TST,i}\right)$$

Event to occur: the one with the smallest time.

#### From One Reaction to Many...

• Many species on catalytic surface, many possible reaction types,



each with its own rate constant.

#### Time of occurrence of next event:

$$\tau = \min_{i} (\tau_{i}) \sim \mathcal{Exp}\left(\sum_{i=1}^{n} r_{\text{TST},i}\right)$$

Event to occur: **the one with the smallest time**.

⇒ we can simulate a sequence of lattice configurations and take samples

# Equation governing the statistics of these configurations?

#### The Master Equation



#### The Master Equation



• Equation linear with respect to  $P(\sigma)$  but state space often too large,

e.g. for lattice gas  $2^{\text{Nsites}} = 5.62 \times 10^{14}$  for N<sub>sites</sub> = 49

✓ We simulate & sample stochastic trajectories (KMC method)

Jansen, A. P. J. (2012). An introduction to kinetic Monte Carlo simulations of surface reactions. Berlin, Springer-Verlag. Darby, M. T., Piccinin, S. and M. Stamatakis (2016). Chapter 4: First principles-based kinetic Monte Carlo simulation in catalysis" in Kasai, H. and M. C. S. E. Escaño (Eds.), Physics of Surface, Interface and Cluster Catalysis, Bristol, UK: IOP Publishing.

#### **KMC Algorithm Flowchart**



Jansen, A. P. J. (2012). An introduction to kinetic Monte Carlo simulations of surface reactions. Berlin, Springer-Verlag.

Darby, M. T., Piccinin, S. and M. Stamatakis (2016). Chapter 4: First principles-based kinetic Monte Carlo simulation in catalysis" in Kasai, H. and M. C. S. E. Escaño (Eds.), Physics of Surface, Interface and Cluster Catalysis, Bristol, UK: IOP Publishing.

### **Typical KMC Output**



# Outline

- Atomistic/Molecular level
  - Calculating rates for elementary events (transition state theory)
- Mesoscopic level
  - Simulating reactions on spatially extended systems
- Accurate modelling of catalytic surface reactions
  - Complex materials (lattices)
  - Complicated reactions
  - Coverage effects



## **Graph-Theoretical KMC Approach**

- Lattice represented as graph
  - Multiple site types
  - Arbitrary connectivity of sites



• State: molecular entity, species, and dentate for every site



• **Orientation** explicitly captured





**CO**\*

CO,\*\*

M. Stamatakis and D. G. Vlachos, J. Chem. Phys. 134(21): 214115 (2011).

#### Lattice State Representation



- Multi-dentate species modeled (bind to more than one sites)
- Lattice represented as graph
- $\hfill\blacksquare$  State specifies species & dentation  $\forall$  site

| Site | Entity | Species | Dentate |
|------|--------|---------|---------|
| 1    | 15     | 0       | 1       |
| 2    | 5      | 0       | 1       |
| 3    | 16     | 0       | 1       |
| :    | •      | :       | :       |
| 7    | 21     | 1       | 1       |
| 18   | 7      | 2       | 1       |
| :    | :      | :       | :       |
| 24   | 31     | 3       | 1       |
| :    | :      | :       | :       |
| 31   | 31     | 3       | 2       |
| 32   | 3      | 0       | 1       |





#### Lattice State Representation



- Multi-dentate species modeled (bind to more than one sites)
- Lattice represented as graph
- $\hfill\blacksquare$  State specifies species & dentation  $\forall$  site

| Entity | Species | Sites |
|--------|---------|-------|
| 1      | 0       | 4     |
|        | ÷       | ÷     |
| 7      | 2       | 18    |
|        | :       | ÷     |
| 21     | 1       | 7     |
| 31     | 3       | 24,31 |
| :      | :       | :     |
|        |         |       |





### **Elementary Step Representation**

- Elementary steps → connected graphs
- Subgraph isomorphism used to
  - identify possible elementary steps
  - map them to lattice processes





M. Stamatakis and D. G. Vlachos, J. Chem. Phys. 134(21): 214115 (2011).

# Solving the Subgraph Isomorphism

- Subraph isomorphism:
  - Create all permutations of  $N_{sub}$  out of  $N_L$  lattice sites
  - Check each permutation
- Optimizations:
  - Check permutations while constructing (Ullmann 1976)
  - Consider only sites within certain distance from entity
    - $\Rightarrow$  localized pattern search



#### Lattice Process Lists

- Given lattice state, each lattice process fully specified by
  - Type of elementary step
  - Site mapping:



M. Stamatakis and D. G. Vlachos, J. Chem. Phys. 134(21): 214115 (2011).

### KMC Book-keeping



M. Stamatakis and D. G. Vlachos, J. Chem. Phys. 134(21): 214115 (2011).

## Selecting the Next Event to Happen

- Heap structure:
  - Partially ordered binary tree
  - Each node has priority over all its children nodes
  - Priority determined by event's execution time
  - Insert, update, remove operations reorder the tree so that the heap property is always satisfied
  - Next KMC event always found in the top node



### Use of Heap Arrays for Queue Construction

28

- Heap structures for the queue of processes to be executed
- Addition, removal, update of a process → **automatic sorting**



- Assume that process 4 just occurred
- Removal of that process from the heap:



#### **Heap Addition Operation**

- Assume we just found another feasible lattice process
- Addition of the 10<sup>th</sup> process:



#### **Heap Addition Operation**

- Assume we just found another feasible lattice process
- Addition of the 10<sup>th</sup> process:



#### **Heap Addition Operation**

- Assume we just found another feasible lattice process
- Addition of the 10<sup>th</sup> process:



# Outline

- Atomistic/Molecular level
  - Calculating rates for elementary events (transition state theory)
- Mesoscopic level
  - Simulating reactions on spatially extended systems
- Accurate modelling of catalytic surface reactions
  - Complex materials (lattices)
  - Complicated reactions
  - Coverage effects



## Non-ideal Adlayers

- Adsorbates on the surface exert attractive/repulsive interactions
  - of the adlayer is not (necessarily) equal to the sum of adsorption energies, *e.g.*:



• In the general case: cluster expansion



Patterns represented as graphs, detected using same ideas as for reactions...

J. Nielsen, M. d'Avezac, J. Hetherington and M. Stamatakis, J. Chem. Phys. 139 (22), 224706 (2013).

#### **Modelling Coverage Effects**

• Attractive or repulsive interactions affecting rate, e.g.

$$W_{des,i} = A_{des} \cdot exp\left(-\frac{E_a - J_{int} \cdot \sum_{j \in \mathcal{N}_i} \sigma_j}{k_B \cdot T}\right) \cdot \sigma_i$$
Rate increases for repulsive interactions (J\_{int} > 0)
$$(J_{int} > 0)$$

#### **Treating the general case?**

J. Nielsen, M. d'Avezac, J. Hetherington and M. Stamatakis, J. Chem. Phys. 139 (22), 224706 (2013).

#### **Brønsted-Evans-Polanyi Relations**



- Linear correlation between activation and reaction energy
- Captures effect of local reaction environment on rate

J. Nielsen, M. d'Avezac, J. Hetherington and M. Stamatakis, J. Chem. Phys. 139 (22), 224706 (2013).

## Putting It All Together: Algorithm Outline

- Initialize all data structures & populate lattice
- Create a heap of all microscopic processes
- While  $t < t_{final}$ 
  - Advance time to that of the top process
  - Execute corresponding process:
    - Remove reactants from lattice, and associated processes and energetics
    - Add products into lattice, add new energetic interactions
  - Update event queue:
    - Add to heap all processes in which newly added products can participate
  - Update processes of existing processes if needed (energetic interactions)
- Repeat

# Take Home Messages

- Kinetic Monte-Carlo (KMC) simulation:
  - Versatile framework applicable to adsorption/desorption, reaction, diffusion (and other) processes
  - Attracting growing interest in the last few years



Number of articles published per year containing the keywords "kinetic Monte Carlo" and "catalys\*" (data from Web of Science)

- KMC provides unique insight, by bridging
  - molecular scale processes (micro) &
  - observable phenomena (meso, macro)
  - having a dynamic component...