Zacros Tutorial 1: Demonstration of Ethylene Hydrogenation Example

Michail Stamatakis

University College London

"Workshop on Multiscale Computational Catalysis and Materials Science"

National Institute of Technology, Akashi College, Akashi, Japan

March 3 – 5, 2020

First-Principles Kinetic Modelling

- Catalytic performance metrics: activity, selectivity, yield
- Mechanistic understanding: dominant pathway, abundant surface species, active sites

Why Zacros?

- First KMC package to use **graph-theory** for treating:
 - reaction patterns of arbitrary complexity

Why Zacros?

- First KMC package to use graph-theory for treating:
 - reaction patterns of arbitrary complexity
 - coverage effects with consistency and high-accuracy
- ✓ High-fidelity KMC simulation in catalysis

Software Installation

Building and creating executable

Create a build directory and enter the build directory

mkdir build; cd build;

Serial build:

cmake ../ -DCMAKE_BUILD_TYPE=Release
 -Ddoopenmp=off -Ddompi=off

- -DCMAKE_BUILD_TYPE=Debug: Disables compiler optimizations and enables debug flags
- -DCMAKE_Fortran_FLAGS='-g -fbounds-check'

Create executable: make -j

Custom Options for CMake

 Ddoopenmp=on: enables shared-memory parallelization (product-caching); accelerates simulations with long—ranged adsorbate lateral interaction

Upcoming features

-Ddompi=on: Distributed parallelization of kinetic Monte-Carlo by implementing the "Time Warp" algorithm

Input Files: Structure and Content

Demonstration: Ethylene Hydrogenation

$H_{2(g)} + 2^* \rightleftharpoons 2H^*$	Gas species		Surface species		
$C_2H_{4(g)} + * \rightleftharpoons C_2H_4^*$	H _{2(g)}	0 eV	H*	-0.468 eV	
$C_2H_4^* + H^* \rightleftharpoons C_2H_5^*$	$C_2H_{4(g)}$	0 eV	C ₂ H ₄ *	-0.607 eV	
$C_2H_5^* + H^* \rightleftharpoons C_2H_{6(g)}$ Ea = 0.629 eV	C ₂ H _{6(g)}	-1.379 eV	C 2115		

- On Pd(100) the reaction proceeds via two subsequent hydrogenation steps after adsorption of reactants¹
 - ¹ Hansen & Neurock, Journal of Catalysis 196, 241–252 (2000)

General Simulation Input

random_seed	71543
temperature	380.0
pressure	2.00
n_gas_species	3
gas_specs_names	H2 C2H4 C2H6
gas_energies	0.000 0.000 -1.379 # eV
gas_molec_weights	2.016 28.053 30.069 # g/mol
gas_molar_fracs	0.100 0.100 0.000
n_surf_species	3
surf_specs_names	H* C2H4* C2H5*
surf_specs_dent	1 2 1
<pre>snapshots process_statistics species_numbers</pre>	on time 1e-5 on time 1e-5 on time 1e-5
event_report	on
<pre>max_steps max_time wall_time finish</pre>	infinity 1.0e+50 5000

- Zacros's input files:
 - General parameters
 - Lattice structure
 - Energetics
 - Reaction mechanism
 - Initial state (optional)
- General parameters appear in file:

simulation_input.dat

- Conditions
- Species information
- Gas energetics
- Simulation flags and parameters

• *Zacros* incorporates a lattice generator for easily defining any periodic 2D lattice structure

• Draw the unit cell with all sites therein

• *Zacros* incorporates a lattice generator for easily defining any periodic 2D lattice structure

- Draw the unit cell with all sites therein
- Draw the periodic images clockwise from N to SE

• *Zacros* incorporates a lattice generator for easily defining any periodic 2D lattice structure

- Draw the unit cell with all sites therein
- Draw the periodic images clockwise from N to SE
- Mark all links with neighbouring sites on these cells

```
lattice periodic cell
cell vectors # in row format (Angstroms)
   2.751140353562500 0.00000000000000
   0.0000000000000 2.751140353562500
repeat cell 7 7
n site types 2
site type names top hol
n cell sites
               2
site types top hol
site coordinates # fractional coord. (x,y) in rows
   0.2500000000000 0.2500000000000
   0.7500000000000 0.75000000000000
neighboring structure # site-neighsite cell
   1-2 self
   1-1 north
   1-1 east
   2-1 north
   2-1 northeast
   2-1 east
   2-2 north
   2-2 east
end neighboring structure
end lattice
```


Straightforward translation of the figure into file: lattice_input.dat

Energetics Model

 Zacros incorporates cluster expansion Hamiltonians for the accurate representation of adsorbate lateral interactions

Energy = -5.191008 eV

Energetics Input

• To define each pattern (cluster) in the Hamiltonian:

Adsorbed hydrogen pair repulsion

Bidentate ethylene binding

• Draw all the sites and species involved in the pattern

Energetics Input

• To define each pattern (cluster) in the Hamiltonian:

- Draw all the sites and species involved in the pattern
- Number all the sites, adsorbates (surface entities), and dentates thereof

Energetics Input

```
energetics
****
cluster H Pair hollow
 sites 2
 neighboring 1-2
 lattice state
   1 H* 1
   2 H* 1
                hol hol
 site types
 graph multiplicity 2
 cluster eng
          -0.100 # eV
end cluster
****
cluster C2H4 top-top
 sites 2
 neighboring 1-2
 lattice state
   1 C2H4* 1
   1 C2H4* 2
 site types
             top top
 graph multiplicity
           -0.607 # eV
 cluster eng
end cluster
end energetics
```


 Straightforward translation of the figure into file: energetics_input.dat • Reactions are similarly represented as graphs with an initial and a final state (reactants, products)

Ethylene hydrogenation step

Initial state: ethylene next to a hydrogen adatom

Final state: ethyl and empty sites pseudo-species

Mechanism Input

Running a Simulation

Running Zacros

• Put all input files in one directory and invoke *Zacros*

😋 🔵 🗢 📕 🕨 EthyleneHydrogenationT 🕨 ZacrosSimulationFi	iles 🔹 🗲 Search ZacrosSimulat	ionFiles		م
File Edit View Tools Help				
Organize Include in library Share with Burn	New folder			- 🗌 🔞
★ Favorites	Name	Date modified	Туре	Size
	🖉 energetics_input.dat	17/04/2015 16:59	DAT File	2 KB
📃 Desktop	📝 lattice_input.dat	17/04/2015 16:54	DAT File	2 KB
🥽 Libraries	📝 mechanism_input.da	17/04/2015 17:11	DAT File	3 KB
🚺 Michail Stamatakis	📓 simulation_input.dat	20/04/2015 14:33	DAT File	2 KB
🖳 Computer	restart.inf	20/04/2015 14:34	Setup Information	134 KB
📬 Network	general_output.txt	20/04/2015 14:34	Text Document	3,998 KB
📴 Control Panel	history_output.txt	20/04/2015 14:34	Text Document	1,026 KB
👿 Recycle Bin	lattice_output.txt	20/04/2015 14:34	Text Document	18 KB
EnergeticsStatisticsTests	procstat_output.txt	20/04/2015 14:34	Text Document	172 KB
🐌 EthyleneHydrogenationTutorial	i specnum_output.txt	20/04/2015 14:34	Text Document	59 KB
Postprocessing				
ZacrosSimulationFiles		(

10 items

Post-processing the Results

- "Zacros-post" tool available for post-processing output (standalone GUI and Python importable libraries)
- Surface coverages can be investigated and most abundant species identified

Post-processing the Results

- Statistical analysis of reaction events can identify major pathways and rate-determining steps
- Catalytic activity and selectivity can be estimated

For more information...

- Tutorials
- Exemplar input files
- Scientific publications
- Software development news and updates

http://zacros.org

Activity

- Install Zacros on your computer or on the cluster under your account.
 - You may have to run the command: export FC=ifort before the cmake commands, in order to instruct cmake to use the Intel Fortran Compiler.
- Download Zacros_Tutorial_01_SimulationFiles.zip (containing the input files for the ethylene hydrogenation example).
- Make a new directory, move the file there and unzip.
- Run the simulation, and when it completes, visualise the contents of specnum_output.dat using Excel (or *Zacros*-post if you have it installed in your computer).