Zacros Tutorial 3: Energetics Input for CO Oxidation on Pt(100)

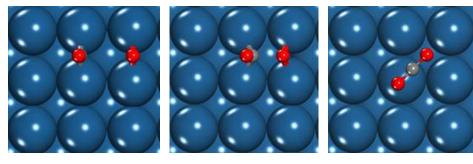
Michail Stamatakis

University College London

"Workshop on Multiscale Computational Catalysis and Materials Science"

National Institute of Technology, Akashi College, Akashi, Japan

March 3 – 5, 2020


Raw Data from CO Oxidation Calculations

Gas Phase Species	DFT Energy (eV)
O ₂ (g)	-7.88
CO (g)	-13.60
CO ₂ (g)	-20.76

Clean Slab	DFT Energy (eV)
Pt(100) Clean Surface	-187.15

Adsorbed Species	DFT Energy (eV)
CO Adsorbed on Bridge	-203.11
CO Adsorbed on 4fold	-202.60
O Adsorbed on Bridge	-192.60
O Adsorbed on 4fold	-192.15

"Reactive" states	DFT Energy (eV)
CO+O co-adsorbed (both on Bridge) – (Initial State)	-208.51
Transition State	-207.97
CO ₂ loosely adsorbed (vdW) on Pt(100) – (Final State)	-208.11

Initial state

Transition state

Final state

• We need to convert the energies of this dataset to formation energies before putting them to *Zacros* input files

Calculation of Formation Energies

- First, we need to choose reference states: CO, O₂, Pt(100)
- Then we can calculate formation energies e.g.:

For gas species:

$$FE_{co} = DFTE_{co} - DFTE_{co} = 0.00 \text{ eV}$$

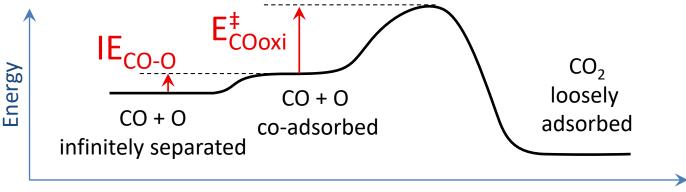
$$FE_{co_2} = DFTE_{co_2} - DFTE_{co} - \frac{1}{2}DFTE_{o_2} = -20.76 - (-13.60) - \frac{1}{2}(-7.88) = -3.22 \text{ eV}$$

For adsorbed states:

$$FE_{CObrg} = DFTE_{CObrg} - DFTE_{Pt(100)} - DFTE_{CO} = -2.36 \text{ eV}$$

$$FE_{CO_2vdW} = DFTE_{CO_2vdW} - DFTE_{Pt(100)} - DFTE_{CO} - \frac{1}{2}DFTE_{O_2}$$

$$= -3.42 \text{ eV}$$


Calculation of Interaction & Activation Energies

• Next we will calculate the interaction energy between CO and O in the co-adsorbed state:

$$E_{CO-O} = FE_{CO+O-coads} - FE_{CO} - FE_{O} = 0.05 \text{ eV}$$

• Finally, the activation energy of the CO oxidation event:

$$E_{COoxi}^{\ddagger} = FE_{CO-TS} - FE_{CO+O-coads} = 0.54 \text{ eV}$$

Reaction coordinate

- Calculate the formation energies of all other species.
- Using the information calculated, create the input files simulation_input.dat and energetics_input.dat.
 For guidance, you can use: the slides of the first tutorial of this workshop, the manual, and the online tutorial: http://zacros.org/tutorials/4-tutorial-1-ziff-gulari-barshad-model-in-zacros
- Use the lattice_input.dat file created in tutorial 2 and check that Zacros parses these files (you should get no errors for these files, but you are expected get an error that the mechanism input file is missing).