Zacros Tutorial 4: Mechanism Input for CO Oxidation on $\mathrm{Pt}(100)$

Michail Stamatakis

University College London

"Workshop on Multiscale Computational Catalysis and Materials Science" National Institute of Technology, Akashi College, Akashi, Japan

$$
\text { March } 3 \text { - 5, } 2020
$$

Equations for Calculating Rate Constants

- The general equation for the rate constant from transition state theory (TST) is:

$$
\mathrm{k}_{\mathrm{TST}}=\kappa \cdot \frac{\mathrm{k}_{\mathrm{B}} \cdot \mathrm{~T}}{\mathrm{~h}} \cdot \frac{\mathrm{q}^{\ddagger}}{\mathrm{q}_{\mathrm{reac}}} \cdot \exp \left(-\frac{\mathrm{E}^{\ddagger}}{\mathrm{k}_{\mathrm{B}} \cdot \mathrm{~T}}\right)
$$

- The activation energy E^{\ddagger} can be easily obtained as the difference between transition and initial state energies.
- The quasi partition functions involve translational, rotational and vibrational components, as necessary.
- The transmission coefficient κ has to be calculated from expensive MD simulations and is usually assumed $=1$.

Rate Constants for Particular Elementary Events

- Non-activated exothermic adsorption: $\mathrm{X}_{\mathrm{gas}}+* \Leftrightarrow \mathrm{X}^{*}$

Forward (adsorption): $\quad \mathrm{k}_{\mathrm{TST}}^{\mathrm{ads}}=\frac{\mathrm{p}_{\mathrm{X}} \cdot \mathrm{A}_{\text {site }}}{\sqrt{2 \cdot \pi \cdot \mathrm{~m}_{\mathrm{X}_{\mathrm{gas}}} \cdot \mathrm{k}_{\mathrm{B}} \cdot \mathrm{T}}}$
Reverse (desorption):

$$
\mathrm{k}_{\mathrm{TST}}^{\text {des }}=\frac{\mathrm{k}_{\mathrm{B}} \cdot \mathrm{~T}}{\mathrm{~h}} \cdot \frac{\mathrm{q}_{\text {vib }, X_{\mathrm{gas}}} \cdot \mathrm{q}_{\text {rot }, X_{\mathrm{gas}}} \cdot \mathrm{q}_{\text {trans } 2 \mathrm{D}, \mathrm{X}_{\mathrm{gss}}}}{\mathrm{q}_{\text {vib }, X}} \cdot \exp \left(\frac{\Delta \mathrm{E}_{\text {ads }}}{\mathrm{k}_{\mathrm{B}} \cdot \mathrm{~T}}\right)
$$

- Surface reaction: $X^{*}+Y^{*} \Leftrightarrow Z^{*}$

$$
\mathrm{k}_{\mathrm{TST}}^{\mathrm{des}}=\frac{\mathrm{k}_{\mathrm{B}} \cdot \mathrm{~T}}{\mathrm{~h}} \cdot \frac{\mathrm{q}_{\mathrm{vib}}^{\ddagger}}{\mathrm{q}_{\mathrm{vib}, \mathrm{X}^{*}} \cdot \mathrm{q}_{\mathrm{vib}, \mathrm{Y}^{*}}} \cdot \exp \left(-\frac{\mathrm{E}^{\ddagger}}{\mathrm{k}_{\mathrm{B}} \cdot \mathrm{~T}}\right)
$$

Rate Constants for Particular Elementary Events

- Important: for events that contain gas species, the preexponential that Zacros expects does not involve the partial pressure of the gas species, e.g. for adsorption:
Forward (adsorption): $\mathrm{k}_{\text {TST }}^{\text {ads }}=\mathrm{p}_{\mathrm{X}} \cdot \frac{\mathrm{A}_{\text {site }}}{\sqrt{2 \cdot \pi \cdot \mathrm{~m}_{\mathrm{X}_{\mathrm{gas}}} \cdot \mathrm{k}_{\mathrm{B}} \cdot \mathrm{T}}}$
Note: for $\mathrm{A}_{\text {site }}$, if more than one site is involved in the event we typically sum the areas of the sites involved.

- At runtime, Zacros multiplies this pre-exponential with the appropriate partial pressure(s), calculated from information given in simulation_input.dat.

Equations for Quasi-Partition Functions

- 2D-translational partition function: $\quad \mathrm{q}_{\text {trans } 2 \mathrm{D}, \mathrm{X}_{\mathrm{gas}}}=\frac{2 \cdot \pi \cdot \mathrm{~m}_{\mathrm{X}_{\mathrm{gas}}} \cdot \mathrm{k}_{\mathrm{B}} \cdot \mathrm{T}}{\mathrm{h}^{2}} \cdot \mathrm{~A}_{\text {site }}$
- Rotational partition function for a linear molecule:

$$
\mathrm{q}_{\mathrm{rot}, \mathrm{X}_{\mathrm{gas}}}=\frac{\mathrm{T}}{\sigma \cdot \theta_{\mathrm{rot}, \mathrm{X}_{\mathrm{gas}}}} \quad \text { where } \quad \theta_{\mathrm{rot}, \mathrm{X}_{\mathrm{gas}}}=\frac{\hbar^{2}}{2 \cdot \mathrm{I}_{\mathrm{X}, \mathrm{gas}} \cdot \mathrm{k}_{\mathrm{B}}}
$$

- Vibrational partition function (incl. ZPE):

$$
\mathrm{q}_{\text {vib }, \mathrm{X}_{\text {gas }}}=\prod_{\mathrm{j}=1}^{\mathrm{N}_{\text {modes }}} \frac{\exp \left(-\frac{\mathrm{h} \cdot \mathrm{v}_{\mathrm{j}}}{2 \cdot \mathrm{k}_{\mathrm{B}} \cdot \mathrm{~T}}\right)}{1-\exp \left(-\frac{\mathrm{h} \cdot \mathrm{v}_{\mathrm{j}}}{\mathrm{k}_{\mathrm{B}} \cdot \mathrm{~T}}\right)}
$$

$$
\delta E=1 / 2 \cdot h \cdot v
$$

Raw Data from CO Oxidation Calculations

Gas Species	Vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$	σ	$\mathrm{I}\left(\mathrm{eV} \cdot \mathrm{s}^{2}\right)$	Mass (amu)
$\mathrm{O}_{2}(\mathrm{~g})$	2061	2	$1.215 \cdot 10^{-27}$	32
$\mathrm{CO}(\mathrm{g})$	2127	1	$9.093 \cdot 10^{-28}$	28
$\mathrm{CO}_{2}(\mathrm{~g})$	$2347,1310,630,630$	2	$4.463 \cdot 10^{-27}$	44

Adsorbed Species	Vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$
CO Adsorbed on Bridge	$1848,399,387,374,197,51$
CO Adsorbed on 4fold	$1682,269,230,227,41,30$
O Adsorbed on Bridge	$506,482,139$
O Adsorbed on 4fold	$357,157 \mathrm{i}, 157 \mathrm{i}$
CO_{2} loosely adsorbed	$2335,1309,617,600,56,41,32,19,12$
Transition state (CO-O)	$1748,570,421,354,318,301,178,162,337 i$

- We can use this information to calculate pre-exponentials
- In view of the imaginary frequencies of $\mathrm{O}_{\text {4fold }}$, think whether it should be included as a species in the KMC simulation...

Activity

- Calculate the forward \& reverse pre-exponentials of the following 3 reversible elementary events: CO adsorption on a bridge site, O_{2} dissociative adsorption on two bridge sites, CO oxidation. Given: $\mathrm{T}=900 \mathrm{~K}, \mathrm{P}_{\mathrm{CO}}=\mathrm{P}_{\mathrm{O}_{2}}=0.5$ bar, $P_{\mathrm{CO}_{2}}=0$ bar, $\mathrm{A}_{\text {brg }}=2.57 \AA^{2}$.
- Using the information calculated, create the input file mechanism_input.dat. For guidance, you can use: the slides of the first tutorial of this workshop, the manual, and the online tutorial: http://zacros.org/tutorials/4-tutorial-1-ziff-gulari-barshad-model-in-zacros
- Complete a Zacros simulation for the conditions given. Visualise the results for the CO_{2} molecules produced over time, and estimate the turnover frequency.

Physical Constants and Conversion Factors

- For convenience the following are given:
- Physical constants:

$$
\begin{aligned}
& \mathrm{h}=4.1357 \cdot 10^{-15} \mathrm{eV} \cdot \mathrm{~s} \quad \hbar=\frac{\mathrm{h}}{2 \cdot \pi} \\
& \mathrm{k}_{\mathrm{B}}=8.6173 \cdot 10^{-5} \mathrm{eV} \cdot \mathrm{~K}^{-1} \\
& \mathrm{c}=2.9979 \cdot 10^{10} \mathrm{~cm} \cdot \mathrm{~s}^{-1}
\end{aligned}
$$

- Conversion factors: $1 \mathrm{amu}=1.0364 \cdot 10^{-28} \mathrm{eV} \cdot \mathrm{s}^{2} \cdot \AA^{-2}$

$$
1 \mathrm{bar}=6.2415 \cdot 10^{-7} \mathrm{eV} \cdot \AA^{-3}
$$

"Converting" wavenumbers $\left(\mathrm{cm}^{-1}\right)$ to frequencies $\left(\mathrm{s}^{-1}\right)$ requires multiplying by the speed of light, c.

