Zacros Tutorial 4: Mechanism Input for CO Oxidation on Pt(100)

Michail Stamatakis

University College London

"Workshop on Multiscale Computational Catalysis and Materials Science"

National Institute of Technology, Akashi College, Akashi, Japan

March 3 – 5, 2020

Equations for Calculating Rate Constants

• The general equation for the rate constant from transition state theory (TST) is:

$$k_{TST} = \kappa \cdot \frac{k_{B} \cdot T}{h} \cdot \frac{q^{\ddagger}}{q_{reac}} \cdot exp\left(-\frac{E^{\ddagger}}{k_{B} \cdot T}\right)$$

- The activation energy E^\ddagger can be easily obtained as the difference between transition and initial state energies.
- The quasi partition functions involve translational, rotational and vibrational components, as necessary.
- The transmission coefficient κ has to be calculated from expensive MD simulations and is usually assumed = 1.

Rate Constants for Particular Elementary Events

• Non-activated exothermic adsorption: $X_{gas} + * \Leftrightarrow X^*$

Forward (adsorption):
$$k_{TST}^{ads} = \frac{p_X \cdot A_{site}}{\sqrt{2 \cdot \pi \cdot m_{X_{gas}} \cdot k_B \cdot T}}$$

Reverse (desorption):

$$k_{\text{TST}}^{\text{des}} = \frac{k_{\text{B}} \cdot T}{h} \cdot \frac{q_{\text{vib}, X_{\text{gas}}} \cdot q_{\text{rot}, X_{\text{gas}}} \cdot q_{\text{trans2D}, X_{\text{gas}}}}{q_{\text{vib}, X}} \cdot \exp\left(\frac{\Delta E_{\text{ads}}}{k_{\text{B}} \cdot T}\right)$$

• Surface reaction: $X^* + Y^* \Leftrightarrow Z^*$

$$k_{\text{TST}}^{\text{des}} = \frac{k_{\text{B}} \cdot T}{h} \cdot \frac{q_{\text{vib}}^{\ddagger}}{q_{\text{vib},X^{*}} \cdot q_{\text{vib},Y^{*}}} \cdot \exp\left(-\frac{E^{\ddagger}}{k_{\text{B}} \cdot T}\right)$$

See also: https://pubs.acs.org/doi/suppl/10.1021/cs3005709/suppl_file/cs3005709_si_001.pdf

Rate Constants for Particular Elementary Events

• **Important**: for events that contain gas species, the preexponential that *Zacros* expects does not involve the partial pressure of the gas species, e.g. for adsorption:

• At **runtime**, *Zacros* multiplies this pre-exponential with the appropriate partial pressure(s), calculated from information given in simulation_input.dat.

Equations for Quasi-Partition Functions

- 2D-translational partition function: $q_{trans2D,X_{gas}} = \frac{2 \cdot \pi \cdot m_{X_{gas}} \cdot k_B \cdot T}{h^2} \cdot A_{site}$
- Rotational partition function for a linear molecule:

$$q_{rot,X_{gas}} = \frac{T}{\sigma \cdot \theta_{rot,X_{gas}}} \quad \text{where} \quad \theta_{rot,X_{gas}} = \frac{\hbar^2}{2 \cdot I_{X,gas} \cdot k_B}$$

• Vibrational partition function (incl. ZPE):

Raw Data from CO Oxidation Calculations

Gas Species	Vibrational frequencies (cm ⁻¹)	σ	I ($eV \cdot s^2$)	Mass (amu)
O ₂ (g)	2061	2	1.215.10-27	32
CO (g)	2127	1	9.093·10 ⁻²⁸	28
CO ₂ (g)	2347, 1310, 630, 630	2	4.463.10-27	44

Adsorbed Species	Vibrational frequencies (cm ⁻¹)	
CO Adsorbed on Bridge	1848, 399, 387,374, 197, 51	
CO Adsorbed on 4fold	1682, 269, 230, 227, 41, 30	
O Adsorbed on Bridge	506, 482, 139	
O Adsorbed on 4fold	357, 157 i, 157 i	
CO ₂ loosely adsorbed	2335, 1309, 617, 600, 56, 41, 32, 19, 12	
Transition state (CO-O)	1748, 570, 421, 354, 318, 301, 178, 162, <mark>337i</mark>	

- We can use this information to calculate pre-exponentials
- In view of the imaginary frequencies of O_{4fold}, think whether it should be included as a species in the KMC simulation...

Activity

- Calculate the forward & reverse pre-exponentials of the following 3 reversible elementary events: CO adsorption on a bridge site, O₂ dissociative adsorption on two bridge sites, CO oxidation. Given: T = 900 K, P_{CO} = P_{O2} = 0.5 bar, P_{CO2} = 0 bar, A_{brg} = 2.57 Å².
- Using the information calculated, create the input file mechanism_input.dat. For guidance, you can use: the slides of the first tutorial of this workshop, the manual, and the online tutorial: <u>http://zacros.org/tutorials/4-</u> <u>tutorial-1-ziff-gulari-barshad-model-in-zacros</u>
- Complete a Zacros simulation for the conditions given.
 Visualise the results for the CO₂ molecules produced over time, and estimate the turnover frequency.

Physical Constants and Conversion Factors

- For convenience the following are given:
- Physical constants: $h = 4.1357 \cdot 10^{-15} \text{ eV} \cdot \text{s}$ $\hbar = \frac{h}{2 \cdot \pi}$ $k_B = 8.6173 \cdot 10^{-5} \text{ eV} \cdot \text{K}^{-1}$ $c = 2.9979 \cdot 10^{10} \text{ cm} \cdot \text{s}^{-1}$
- Conversion factors: $1 \text{ amu} = 1.0364 \cdot 10^{-28} \text{ eV} \cdot \text{s}^2 \cdot \text{\AA}^{-2}$ $1 \text{ bar} = 6.2415 \cdot 10^{-7} \text{ eV} \cdot \text{\AA}^{-3}$

"Converting" wavenumbers (cm⁻¹) to frequencies (s⁻¹) requires multiplying by the speed of light, c.